Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Genes (Basel) ; 15(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38674425

RESUMO

BACKGROUND: Normal tension glaucoma (NTG) is becoming a more and more serious problem, especially in Asia. But the pathological mechanisms are still not illustrated clearly. We carried out this research to uncover the gene polymorphisms with NTG. METHODS: We searched in Web of Science, Embase, Pubmed and Cochrane databases for qualified case-control studies investigating the association between single nucleotide polymorphisms (SNPs) and NTG risk. Odds ratios (ORs) and 95% confidence intervals (CIs) for each SNP were estimated by fixed- or random-effect models. Sensitivity analysis was also performed to strengthen the reliability of the results. RESULTS: Fifty-six studies involving 33 candidate SNPs in 14 genetic loci were verified to be eligible for our meta-analysis. Significant associations were found between 16 SNPs (rs166850 of OPA1; rs10451941 of OPA1; rs735860 of ELOVL5; rs678350 of HK2; c.603T>A/Met98Lys of OPTN; c.412G>A/Thr34Thr of OPTN; rs10759930 of TLR4; rs1927914 of TLR4; rs1927911 of TLR4; c.*70C>G of EDNRA; rs1042522/-Arg72Pro of P53; rs10483727 of SIX1-SIX6; rs33912345 of SIX1-SIX6; rs2033008 of NCK2; rs3213787 of SRBD1 and c.231G>A of EDNRA) with increased or decreased risk of NTG. CONCLUSIONS: In this study, we confirmed 16 genetic polymorphisms in 10 genes (OPA1, ELOVL5, HK2, OPTN, TLR4, EDNRA, P53, NCK2, SRBD1 and SIX1-SIX6) were associated with NTG.


Assuntos
Predisposição Genética para Doença , Glaucoma de Baixa Tensão , Polimorfismo de Nucleotídeo Único , Humanos , Glaucoma de Baixa Tensão/genética , Estudos de Casos e Controles
2.
Protein Cell ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38366188

RESUMO

The progressive degradation in the trabecular meshwork (TM) is related to age-related ocular diseases like primary open-angle glaucoma. However, the molecular basis and biological significance of the aging process in TM have not been fully elucidated. Here, we established a dynamic single-cell transcriptomic landscape of aged macaque TM, wherein we classified the outflow tissue into 12 cell subtypes and identified mitochondrial dysfunction as a prominent feature of TM aging. Furthermore, we divided TM cells into 13 clusters and performed an in- depth analysis on cluster 0, which had the highest aging score and the most significant changes in cell proportions between the two groups. Ultimately, we found that the APOE gene was an important differentially expressed gene in cluster 0 during the aging process, highlighting the close relationship between cell migration and extracellular matrix regulation, and TM function. Our work further demonstrated that silencing the APOE gene could increase migration and reduce apoptosis by releasing the inhibition on the PI3K-AKT pathway and downregulating the expression of extracellular matrix components, thereby increasing the aqueous outflow rate and maintaining intraocular pressure within the normal range. Our work provides valuable insights for future clinical diagnosis and treatment of glaucoma.

3.
Hepatology ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085830

RESUMO

BACKGROUND AND AIMS: Ischemia-reperfusion (I/R) injury frequently occurs during liver surgery, representing a major reason for liver failure and graft dysfunction after operation. The metabolic shift from oxidative phosphorylation to glycolysis during ischemia increased glucose consumption and accelerated lactate production. We speculate that donor livers will initiate gluconeogenesis, the reverse process of glycolysis in theory, to convert noncarbohydrate carbon substrates (including lactate) to glucose to reduce the loss of hepatocellular energy and foster glycogen storage for use in the early postoperative period, thus improving post-transplant graft function. APPROACH AND RESULTS: By analyzing human liver specimens before and after hepatic I/R injury, we found that the rate-limiting enzyme of gluconeogenesis, PCK1, was significantly induced during liver I/R injury. Mouse models with liver I/R operation and hepatocytes treated with hypoxia/reoxygenation confirmed upregulation of PCK1 during I/R stimulation. Notably, high PCK1 level in human post-I/R liver specimens was closely correlated with better outcomes of liver transplantation. However, blocking gluconeogenesis with PCK1 inhibitor aggravated hepatic I/R injury by decreasing glucose level and deepening lactate accumulation, while overexpressing PCK1 did the opposite. Further mechanistic study showed that methyltransferase 3-mediated RNA N6-methyladinosine modification contributes to PCK1 upregulation during hepatic I/R injury, and hepatic-specific knockout of methyltransferase 3 deteriorates liver I/R injury through reducing the N6-methyladinosine deposition on PCK1 transcript and decreasing PCK1 mRNA export and expression level. CONCLUSIONS: Our study found that activation of the methyltransferase 3/N6-methyladinosine-PCK1-gluconeogenesis axis is required to protect against hepatic I/R injury, providing potential intervention approaches for alleviating hepatic I/R injury during liver surgery.

4.
Sci China Life Sci ; 66(12): 2837-2850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37610681

RESUMO

Primary open-angle glaucoma (POAG) is a prevalent cause of blindness worldwide, resulting in degeneration of retinal ganglion cells and permanent damage to the optic nerve. However, the underlying pathogenetic mechanisms of POAG are currently indistinct, and there has been no effective nonsurgical treatment regimen. The objective of this study is to identify novel biomarkers and potential therapeutic targets for POAG. The mRNA expression microarray datasets GSE27276 and GSE138125, as well as the single-cell high-throughput RNA sequencing (scRNA-seq) dataset GSE148371 were utilized to screen POAG-related differentially expressed genes (DEGs). Functional enrichment analyses, protein-protein interaction (PPI) analysis, and weighted gene co-expression network analysis (WGCNA) of the DEGs were performed. Subsequently, the hub genes were validated at a single-cell level, where trabecular cells were annotated, and the mRNA expression levels of target genes in different cell clusters were analyzed. Immunofluorescence and quantitative real-time PCR (qPCR) were performed for further validation. DEGs analysis identified 43 downregulated and 32 upregulated genes in POAG, which were mainly enriched in immune-related pathways, oxidative stress, and endoplasmic reticulum (ER) stress. PPI networks showed that FN1 and DUSP1 were the central hub nodes, while GPX3 and VAV3 were screened out as hub genes through WGCNA and subsequently validated by qPCR. Finally, FN1, GPX3, and VAV3 were determined to be pivotal core genes via single-cell validation. The relevant biomarkers involved in the pathogenesis of POAG, may serve as potential therapeutic targets. Further studies are necessary to unveil the mechanisms underlying the expression variations of these genes in POAG.


Assuntos
Glaucoma de Ângulo Aberto , Humanos , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/terapia , Biomarcadores , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
BMC Ophthalmol ; 23(1): 53, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750922

RESUMO

PURPOSE: To describe the normative profile of ophthalmic parameters in a healthy cynomolgus monkey colony, and to identify the characteristic of the spontaneous ocular disease non-human primates (NHP) models. METHODS: The NHP eye study was a cross-sectional on-site ocular examination with about 1,000 macaques held in Guangdong Province, southeastern China. The NHPs (Macaca fascicularis, cynomolgus) in this study included middle-aged individuals with a high prevalence of the ocular disease. The NHP eye study (NHPES) performed the information including systematic data and ocular data. Ocular examination included measurement of intraocular pressure (IOP), anterior segment- optical coherence tomography (OCT), slit-lamp examination, fundus photography, autorefraction, electroretinography, etc. Ocular diseases included measurement of refractive error, anisometropia, cataract, pterygium, etc. RESULTS: A total of 1148 subjects were included and completed the ocular examination. The average age was 16.4 ± 4.93 years. Compared to the male participants, the females in the NHPES had shorter axial length and the mean Average retinal nerve fiber layer (RNFL) thickness (except for the nasal quadrants). The mean IOP, anterior chamber depth, lens thickness, axial length, central corneal thickness, choroid thickness and other parameters were similar in each group. CONCLUSION: The NHPES is a unique and high-quality study, this is the first large macaque monkey cohort study focusing on ocular assessment along with comprehensive evaluation. Results from the NHPES will provide important information about the normal range of ophthalmic measurements in NHP.


Assuntos
Retina , Células Ganglionares da Retina , Feminino , Animais , Masculino , Macaca fascicularis , Estudos de Coortes , Estudos Transversais , Tomografia de Coerência Óptica/métodos
7.
Br J Ophthalmol ; 107(12): 1864-1872, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36162970

RESUMO

PURPOSE: To describe the normal macular thickness and assess its associations. METHODS: The Handan Eye Follow-up Study was conducted between 2012 and 2013. Macular thickness was scanned by spectral-domain optical coherence tomography (OCT). The built-in software generated a retinal thickness (RT) map, which was divided into three regions (central, internal and external regions) and nine quadrants (one in central and four in internal and external regions each). RESULTS: For 5394 subjects in the Handan Eye Follow-up Study, 4793 received OCT examination, 2946 of whom (accounting for 61.46% of the total subjects, mean age 58.91±10.95, 55.6% were women) were included for analysis. The mean RT in central macula, inner and outer rings were (237.38 µm±23.05 µm), (309.77 µm±18.36 µm) and (278.29 µm±14.38 µm), respectively (overall difference, p<0.001). In inner ring, the RT in temporal was thinnest, followed by nasal, superior and inferior. In outer ring, the RT in superior was thinnest, with the next subfields being temporal, inferior and nasal, respectively. The RT in central macula, inner and outer rings were significantly thicker in men than in women. Multivariate linear regression analysis showed that in central macula, RT increased in subjects younger than 60 years and thinned above the age of 60. In inner and outer rings, RT thinned along with age (p<0.001). CONCLUSIONS: This study finds that RT in central macula is the thinnest, followed by the outer ring, the RT in the inner ring is the thickest. Age and gender are related to RT. These associated factors need to be considered when explaining RT.


Assuntos
População do Leste Asiático , Macula Lutea , Feminino , Humanos , Masculino , Seguimentos , Retina , Tomografia de Coerência Óptica/métodos , Pessoa de Meia-Idade , Idoso
8.
Front Pharmacol ; 13: 996635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339559

RESUMO

Transdifferentiation of keratocytes into fibroblasts or further into myofibroblasts, which produced denser and more disorganized extracellular matrix, is the major cause of corneal fibrosis and scarring, leading to corneal blindness. TGF-ß1 is the critical cytokine for the myofibroblast's transdifferentiation and survival. Hypoxia Inducible Factor (HIF) was found to play an important role in promoting fibrosis in lung, kidney, and dermal tissues recently. Our preliminary study demonstrated that topical administration of the acriflavine (ACF), a drug inhibiting HIF dimerization, delayed corneal opacity and neovascularization after the alkali burn. To know whether ACF could prevent corneal fibrosis and improve corneal transparency, we created a mouse mechanical corneal injury model and found that topical administration of ACF significantly inhibited corneal fibrosis at day 14 post-injury. The reduction of myofibroblast marker α-SMA, and fibronectin, one of the disorganized extracellular matrix molecules, in the corneal stroma were confirmed by the examination of immunohistochemistry and real-time PCR. Furthermore, the ACF inhibited the expression of α-SMA and fibronectin in both TGF-ß1 stimulated or unstimulated fibroblasts in vitro. This effect was based on the inhibition of HIF signal pathways since the levels of the HIF-1α downstream genes including Slc2a1, Bnip3 and VEGFA were downregulated. To our knowledge, this is the first time to implicate that HIFs might be a new treatment target for controlling corneal fibrosis in mechanical corneal injuries.

9.
Mol Ther ; 30(12): 3714-3728, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-35923112

RESUMO

Activation of hepatic stellate cells (HSCs) is a central driver of liver fibrosis. Previous investigations have identified various altered epigenetic landscapes during the cellular progression of HSC activation. N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic cells and is dynamically regulated under various physiological and pathophysiological conditions. However, the functional role of Mettl3-mediated m6A in liver fibrosis remains elusive. Here, we found that the HSC-specific knockout of m6A methyltransferase Mettl3 suppressed HSC activation and significantly alleviated liver fibrosis. Multi-omics analysis of HSCs showed that Mettl3 depletion reduced m6A deposition on mRNA transcripts of Lats2 (a central player of the Hippo/YAP signaling pathway) and slowed down their degradation. Elevated Lats2 increased phosphorylation of the downstream transcription factor YAP, suppressed YAP nuclear translocation, and decreased pro-fibrotic gene expression. Overexpressing YAP mutant resistant to phosphorylation by Lats2 partially rescued the activation and pro-fibrotic gene expression of Mettl3-deficient HSCs. Our study revealed that disruption of Mettl3 in HSCs mitigated liver fibrosis by controlling the Hippo/YAP signaling pathway, providing potential therapeutic strategies to alleviate liver fibrosis by targeting epitranscriptomic machinery.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Metiltransferases , Cirrose Hepática/genética , Metiltransferases/deficiência , Metiltransferases/genética , Multiômica , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor , Animais , Camundongos
11.
Nat Commun ; 13(1): 4555, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931692

RESUMO

Hepatic specification and functional maturation are tightly controlled throughout development. N6-methyladenosine (m6A) is the most abundant RNA modification of eukaryotic mRNAs and is involved in various physiological and pathological processes. However, the function of m6A in liver development remains elusive. Here we dissect the role of Mettl3-mediated m6A modification in postnatal liver development and homeostasis. Knocking out Mettl3 perinatally with Alb-Cre (Mettl3 cKO) induces apoptosis and steatosis of hepatocytes, results in severe liver injury, and finally leads to postnatal lethality within 7 weeks. m6A-RIP sequencing and RNA-sequencing reveal that mRNAs of a series of crucial liver-enriched transcription factors are modified by m6A, including Hnf4a, a master regulator for hepatic parenchymal formation. Deleting Mettl3 reduces m6A modification on Hnf4a, decreases its transcript stability in an Igf2bp1-dependent manner, and down-regulates Hnf4a expression, while overexpressing Hnf4a with AAV8 alleviates the liver injury and prolongs the lifespan of Mettl3 cKO mice. However, knocking out Mettl3 in adults using Alb-CreERT2 does not affect liver homeostasis. Our study identifies a dynamic role of Mettl3-mediated RNA m6A modification in liver development.


Assuntos
Metiltransferases , Fatores de Transcrição , Adenosina/metabolismo , Animais , Fator 4 Nuclear de Hepatócito/genética , Fígado/metabolismo , Metiltransferases/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética
12.
J Immunol Res ; 2022: 8118577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747688

RESUMO

N6-methyladenosine (m6A) modification plays a pivotal role in cell fate determination. Previous studies show that eliminating m6A using Mb1-Cre dramatically impairs B cell development. However, whether disturbing m6A modification at later stages affects B cell development and function remains elusive. Here, we deleted m6A methyltransferase Mettl3 from the pro-B stage on using Cd19-Cre (Mettl3 cKO) and found that the frequency of total B cells in peripheral blood, peritoneal cavity, and liver is comparable between Mettl3 cKO mice and wild-type (WT) littermates, while the percentage of whole splenic B cells slightly increases in Mettl3 cKO individuals. The proportion of pre-pro-B, pro-B, pre-B, immature, and mature B cells in the bone marrow were minimally affected. Loss of Mettl3 resulted in increased apoptosis but barely affected B cells' proliferation and IgG production upon LPS, CD40L, anti-IgM, or TNF-α stimulation. Different stimuli had different effects on B cell activation. In addition, B cell-specific Mettl3 knockout had no influence on the pro-fibrogenic activity of B cells in liver fibrosis, evidenced by comparable fibrosis in carbon tetrachloride- (CCl4-) treated Mettl3 cKO mice and WT controls. In summary, our study demonstrated that deletion of Mettl3 from the pro-B stage on has minimal effects on B cell development and function, as well as profibrogenic activity of B cells in liver fibrosis, revealing a stage-specific dependence on Mettl3-mediated m6A of B cell development.


Assuntos
Adenosina , Metiltransferases , Animais , Diferenciação Celular , Cirrose Hepática/genética , Metiltransferases/genética , Camundongos
13.
Adv Sci (Weinh) ; 9(23): e2201271, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35712750

RESUMO

Triple-negative breast cancer (TNBC) exhibits resistance to conventional treatments due to the presence of cancer stem cells (CSCs), causing postsurgical relapse and a dismal prognosis. Umbilical cord blood natural killer (UCB-NK) cell-based immunotherapy represents a promising strategy for cancer treatment. However, its therapeutic efficacy is greatly restrained by downregulation of the NK cell activation ligand MHC class I-related chain A/B (MICA/B) and autophagy-mediated degradation of NK cell-derived granzyme B (GZMB) in CSCs. Herein, it is demonstrated that suberoylanilide hydroxamic acid (SAHA) epigenetically downregulates let-7e-5p and miR-615-3p to increase MICA/B expression and that 3-methyl adenine (3MA) inhibits autophagy-mediated GZMB degradation, thereby sensitizing breast CSCs to UCB-NK cells. Then, an injectable hydrogel is designed to codeliver SAHA and 3MA to enhance UCB-NK cell infusion efficacy in TNBC. The hydrogel precursors can be smoothly injected into the tumor resection bed and form a stable gel in situ, allowing for a pH-sensitive sustained release of SAHA and 3MA. Moreover, UCB-NK cell infusion in combination with the hydrogel efficiently controls postsurgical relapse of TNBC. In addition, the hydrogel exhibits good hemostasis and wound-healing functions. Therefore, the work provides proof of concept that an injectable epigenetic autophagic modulatory hydrogel augments UCB-NK cell therapy to combat postsurgical relapse of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Autofagia , Terapia Baseada em Transplante de Células e Tecidos , Epigênese Genética , Sangue Fetal/metabolismo , Humanos , Hidrogéis , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Vorinostat/uso terapêutico
14.
Biomaterials ; 284: 121506, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390709

RESUMO

Post-resection recurrence remains an intractable problem in hepatocellular carcinoma (HCC) management. Natural killer (NK) cell infusion is considered as a promising cancer therapy, but acidic tumor microenvironment (TME) and neutrophil extracellular traps (NETs) greatly counteract its efficacy. Recently, polymer hydrogels have aroused much interest in tumor combination therapy, since they load and controllably release therapeutic agents with high bioavailability and low systemic toxicity. Therefore, a biocompatible hydrogel with tumor acidity neutralizer and NETs lyase may show promise for enhancing NK infusion to prevent post-resection HCC recurrence. Herein, a dual pH-responsive hydrogel with tumor acidity neutralizer (mesoporous bioactive glass nanoparticles) and NETs lyase (Deoxyribonuclease I, DNase I) is developed and used in combination with NK cell infusion for preventing post-resection HCC recurrence. The hydrogel can be injected to surgical margin and form an adhesive gel with a rapid hemostasis. Besides, it neutralizes tumor acidity to reduce tumor infiltration of immunosuppressive cells, and releases DNase I in a pH-responsive manner to degrade NETs. Moreover, this combination therapy significantly enhances NK cell infusion to combat post-surgical HCC recurrence without systemic toxicity. This study provides proof of concept that combination of NK cell adoptive therapy and hydrogel-based delivery system can successfully prevent post-resection HCC recurrence.


Assuntos
Carcinoma Hepatocelular , Armadilhas Extracelulares , Hemostáticos , Neoplasias Hepáticas , Liases , Adesivos , Carcinoma Hepatocelular/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Desoxirribonuclease I , Hemostasia , Humanos , Hidrogéis/metabolismo , Neoplasias Hepáticas/patologia , Liases/metabolismo , Microambiente Tumoral
15.
Oxid Med Cell Longev ; 2022: 1193734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265258

RESUMO

Background: Obesity and type 2 diabetes mellitus (DM) contribute to a higher mortality rate in patients with septic acute kidney injury (AKI) during sepsis. Reactive oxygen species (ROS) is the major injury factor for sepsis. This study was aimed at exploring the potential therapeutic drug for septic AKI targeting on ROS. Methods: A murine septic AKI model was established in both wild-type and high-fat diet-fed (HFD) mice. NADPH oxidase inhibitor Vas2870 was used in vivo to explore the role of NADPH oxidase in ROS release in septic AKI in diabetic mice. Ferrostatin-1 was administered to investigate the role of ferroptosis in ROS accumulation during NADPH oxidase activating in septic AKI in diabetic mice. Results: Compared to chow diet-fed mice, HFD diabetic mice which were subjected to LPS exhibited aggravated renal function (blood urea nitrogen, creatinine clearance, and serum cystatin C) and oxidative stress (malondialdehyde, 4-HNE, ROS, 8-OHdG, and NADPH oxidase), thus resulting in a higher mortality rate. Septic renal injury was significantly attenuated by the ferroptosis inhibitor Fer-1 in HFD-challenged mice. Furthermore, ferroptosis accumulation and related protein expression (ASCL4, FTH1, and GPX4) were altered by LPS stimulation in HFD-challenged mice and suppressed by NADPH oxidase inhibition via Vas2870 in vivo. In summary, NADPH inhibition restored septic renal function from injury by suppressing ferroptosis accumulation in HFD-challenged mice. Conclusion: These results suggest that targeting NADPH-mediated ROS release and ferroptosis accumulation is a novel therapeutic strategy to protect the kidney from septic injury in patients with obesity and type 2 DM.


Assuntos
Injúria Renal Aguda/terapia , Ferroptose/genética , NADPH Oxidases/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Sepse/terapia , Animais , Diabetes Mellitus Experimental , Humanos , Masculino , Camundongos
16.
Cancer Lett ; 535: 215646, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35304258

RESUMO

Epstein-Barr virus (EBV) is a tumor virus that is associated with a variety of neoplasms, including EBV-associated gastric carcinoma (EBVaGC). Recently, EBV was reported to generate various circular RNAs (circRNAs). CircRNAs are important regulators of tumorigenesis by modulating the malignant behaviors of tumor cells. However, to date, the functions of ebv-circRNAs in EBVaGC remain poorly understood. In the present study, we observed high ebv-circRPMS1 expression in EBVaGC and showed that ebv-circRPMS1 promoted the proliferation, migration, and invasion and inhibited the apoptosis of EBVaGC cells. In addition, METTL3 was upregulated in GC cells overexpressing ebv-circRPMS1. Mechanistically, ebv-circRPMS1 bound to Sam68 to facilitate its physical interaction with the METTL3 promotor, resulting in the transactivation of METTL3 and cancer progression. In clinical EBVaGC samples, ebv-circRPMS1 was associated with distant metastasis and a poor prognosis. Based on these findings, ebv-circRPMS1 contributed to EBVaGC progression by recruiting Sam68 to the METTL3 promoter to induce METTL3 expression. ebv-circRPMS1, Sam68, and METTL3 might serve as therapeutic targets for EBVaGC.


Assuntos
Carcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Carcinoma/patologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Metiltransferases/genética , RNA Circular , Neoplasias Gástricas/patologia
17.
Stem Cell Res Ther ; 13(1): 55, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123561

RESUMO

BACKGROUND: Mesenchymal stem cell (MSC) transplantation is emerging as a promising cell therapeutic strategy in acute liver failure (ALF) clinical research. The potency of MSCs to migrate and engraft into targeted lesions could largely determine their clinical efficacy, in which chemokine/receptor axes play a crucial role. Unfortunately, the downregulation of chemokine receptors expression after in vitro expansion results in a poor homing capacity of MSCs. METHODS: By evaluating the chemokine expression profile in the liver of ALF patients and ALF mice, we found that CCL2 expression was highly upregulated in damaged livers, while the corresponding receptor, CCR2, was lacking in cultured MSCs. Thus, we genetically modified MSCs to overexpress CCR2 and investigated the targeted homing capacity and treatment efficacy of MSCCCR2 compared to those of the MSCvector control. RESULTS: In vivo and ex vivo near-infrared fluorescence imaging showed that MSCCCR2 rapidly migrated and localized to injured livers in remarkably greater numbers following systemic infusion, and these cells were retained in liver lesions for a longer time than MSCvector. Furthermore, MSCCCR2 exhibited significantly enhanced efficacy in the treatment of ALF in mice, which was indicated by a dramatically improved survival rate, the alleviation of liver injury with reduced inflammatory infiltration and hepatic apoptosis, and the promotion of liver regeneration. CONCLUSIONS: Altogether, these results indicate that CCR2 overexpression enhances the targeted migration of MSCs to damaged livers, improves their treatment effect, and may provide a novel strategy for improving the efficacy of cell therapy for ALF.


Assuntos
Falência Hepática Aguda , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Modelos Animais de Doenças , Humanos , Fígado/metabolismo , Falência Hepática Aguda/genética , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Receptores CCR2/genética , Receptores CCR2/metabolismo
18.
Exp Eye Res ; 218: 109008, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35219695

RESUMO

Bullous keratopathy is a serious blinding eye disease requiring corneal endothelial transplantation. However, the lack of cornea donors forced us to search for new sources of functional corneal endothelial cells (CECs). In our previous study, we have successfully differentiated the SKPs into CEC-like cells with unclear mechanism. The Wnt/ß-catenin signaling pathway is essential for maintaining embryonic eye development and formation. This study aimed to clarify the activity of Wnt/ß-catenin pathway in the process of skin-derived precursors (SKPs) differentiating into CEC-like cells. We showed that the expression of active ß-Catenin, p-GSK3ß, P-LRP6 and LRP6 upregulated, indicating the activation of Wnt/ß-catenin pathway during CEC-like cells induction. What's more, when the pathway was inhibited with a specific inhibitor, the process of induction was obviously suppressed. These findings indicates that Wnt/ß-catenin pathway plays an important role in the CEC-like cells induction from SKPs. Our study lays an experimental foundation for providing abundant corneal endothelial cells and promotes CEC-like cells to be clinically applied in cellular replacement therapy or regenerative medicine in the future.


Assuntos
Via de Sinalização Wnt , beta Catenina , Diferenciação Celular/fisiologia , Células Endoteliais/metabolismo , Pele/metabolismo , beta Catenina/metabolismo
19.
Int J Infect Dis ; 113: 116-118, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34601147

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a highly infectious and pathogenic respiratory disease. To date, there is no effective treatment, and there is an urgent need to develop vaccines against the virus. Five coronavirus COVID-19 vaccines have been approved for inoculation in China, with good safety and few adverse reactions. CASE PRESENTATION: A 50-year-old woman complained of bilateral blurred vision and visual distortion 5 days after vaccination with the inactivated COVID-19 vaccine. Physical and auxiliary examination showed that she developed bilateral posterior uveitis. The patient was administered local and systemic steroids, and the symptoms were appreciably improved 5 weeks later. CONCLUSIONS: A case of bilateral uveitis after COVID-19 vaccination was reported and indicated that uveitis after vaccination appears transient and responds well to steroids.


Assuntos
COVID-19 , Uveíte , Vacinas contra COVID-19 , Feminino , Humanos , Pessoa de Meia-Idade , SARS-CoV-2 , Uveíte/diagnóstico , Uveíte/tratamento farmacológico , Uveíte/etiologia , Vacinação/efeitos adversos
20.
Stem Cell Res Ther ; 12(1): 496, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503553

RESUMO

BACKGROUND: Fulminant hepatitis is a severe life-threatening clinical condition with rapid progressive loss of liver function. It is characterized by massive activation and infiltration of immune cells into the liver and disturbance of inflammatory cytokine production. Mesenchymal stem cells (MSCs) showed potent immunomodulatory properties. Transplantation of MSCs is suggested as a promising therapeutic approach for a host of inflammatory conditions. METHODS: In the current study, a well-established concanavalin A (Con A)-induced fulminant hepatitis mouse model was used to investigate the effects of transplanting human umbilical cord Wharton's jelly-derived MSCs (hWJ-MSCs) on fulminant hepatitis. RESULTS: We showed that hWJ-MSCs effectively alleviate fulminant hepatitis in mouse models, primarily through inhibiting T cell immunity. RNA sequencing of liver tissues and human T cells co-cultured with hWJ-MSCs showed that NF-κB signaling and glycolysis are two main pathways mediating the protective role of hWJ-MSCs on both Con A-induced hepatitis in vivo and T cell activation in vitro. CONCLUSION: In summary, our data confirmed the potent therapeutic role of MSCs-derived from Wharton's jelly of human umbilical cord on Con A-induced fulminant hepatitis, and uncovered new mechanisms that glycolysis metabolic shift mediates suppression of T cell immunity by hWJ-MSCs.


Assuntos
Necrose Hepática Massiva , Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Diferenciação Celular , Células Cultivadas , Concanavalina A/toxicidade , Glicólise , Humanos , Camundongos , NF-kappa B/genética , Cordão Umbilical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA